
This is an informal report intended primarily for internal or liiited . . . ..__-
dwtribution. The opinions and conclusions stated are those of the author and may Y

or may not be those of the Laboratory. 7

Work performed under the auspices of the U.S. Department of Energy by the 7

Lawrence Livennore National Laboratory under Contract W-740S-Eng4.

7

, P,

/ ,

UCRL-ID-12WJC)

Modeling Pitting Degradation of Corrosion
Resistant Alloys

Gregory A. Henshall

November 1996



DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States Government.  Neither
the United States Government nor the University of California nor any of their employees, makes any warranty, express
or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned
rights. Reference herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by
the United States Government or the University of California.  The views and opinions of authors expressed herein do
not necessarily state or reflect those of the United States Government or the University of California, and shall not be
used for advertising or product endorsement purposes.

This report has been reproduced
directly from the best available copy.

Available to DOE and DOE contractors from the
Office of Scientific and Technical Information

P.O. Box 62, Oak Ridge, TN  37831
Prices available from (615) 576-8401, FTS 626-8401

Available to the public from the
National Technical Information Service

U.S. Department of Commerce
5285 Port Royal Rd.,

Springfield, VA  22161



Modeling Pitting Degradation of Corrosion Resistant Alloys
Gregory A. Iienshull

Lawrence Livermore National Laboratory

June 1996

Abstract

A computer model capable of simulating the time and environmental dependence of pit

initiation, growth, and cessation of growth has been developed. This phenomenological

model is capable of predicting the time required for initiation of pitting and the

development of a “pitting damage fimction, “ i.e. the distribution of pit depths, for

arbitrary environmental histories. The model is based on a stochastic approach of

describing pit initiation and growth but includes some aspects of the deterministic

features of pit gIowth.

Recent improvements to the model provide the capability to simulate permanent

pit growth cessation and a decreasing time or depth dependence of pit growth rates. The

results of example calculations demonstrate that these additions allow the model to

simulate, in a physically meaningful way, the commonly reported evolution of

asymmetric pit depth distributions and the nonlinear increase in maximum pit depth with

increasing exposure time. An extreme-value statistical analysis also has been

incorporated within the improved computer code, which allows it to predict a logarithmic

increase in maximum pit depth with increasing surface are% as suggested by data and

theory. This addition provides a method for extrapolating experimental pit depth data

gathered using small laboratory samples to the very large container surface areas that

would be exposed in the potential high level nuclear waste repository.

Unfortunately, the lack of experimental data from which to generate code input

parameters for candidate waste package container materials in repository-relevant

environments seriously handicaps the application of this code to performance assessment

activities. Recently, a limited number of experiments have been performed on Alloy 825

in repository-relevant environments. Preliminary data for the pit depth distribution in

potentiostatica.lly-polarized Alloy 825 axe presented and demonstrate the viability of

generating data with which to compare model predictions. The need for additional

experimental efforts is discussed.
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1. Introduction

1.1 Moakling pitting of waste packuge containers

A multiple barrier concept currently is being employed in the development of

waste package (WP) containers for use in the potential geological repository for spent

nuclear fuel and high level nuclear waste at Yucca Mountain, Nevada. Current WP

development considers designs to enclose spent nuclear fuel from commercial power

reactors in one design and reprocessed high-level borosilicate glass waste in another

similar design. In either case, one of the barriers will be constructed of a highly corrosion

resistant material, such as a Ni- or Ti-base alloy. Normally, such alloys are protected by

a passive oxide film, but if they become wet and Cl– or other aggressive species are

present, the passive fdm can break down locally, causing localized corrosion. Of the

three forms of localized corrosionl, viz. pitting, crevice corrosion, and stress-corrosion

cracking, that are likely to occur on WP surfaces exposed to repository environments,

pitting corrosion was chosen for detailed modeling. Pitting corrosion was Sdected

because it bears many similarities to crevice corrosion. Therefore, many aspects of the

pitting model are expected to be directly applicable to the crevice corrosion model. It was

decided to defer development of a validated model of stress-corrosion cracking until

additional experimental information on the stress-corrosion behavior of candidate

container materials under reposito~ relevant-conditions becomes available.

Factors driving the development and experimental validation of a pitting

corrosion model are centered around the need to understand the behavior of candidate

waste container materials that may undergo localized corrosion in repository-relevant

environments. The availability of such a model would minimize the risk of missing some

critical interaction of material and environment that would result in premature failure of

the container. The specific factors include

1. A total lack of operational information on long-term storage of high-level

nuclear waste;

2. Uncertainty and variability in the environmental conditions, and possible

changes in these conditions;

3. The need to make technically defensible extrapolations to very long times

based on expairnental data bases developed over very short times (with respect

to repository lifetimes); and

4. The need to make technically defensible extrapolations to very large

exposed surface areas based on experimental databases developed from much

smaller areas.
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In contrast to uniform corrosion, where mechanistic modeling has been

successful, a statistical approach to characterizing and modeling localized corrosion

appears to be necessary, even though the data requirements are largez. One advantage of

a statistical, or stochastic, model is that the evolution of the pit depth distn”bution, not just

the time required for initial penetration of the containers, can be computed. From this

information the area available for release of radionuclides through the container walls can

be estimated as a fi.mction of tirne3. This report describes a phenomenological approach

for computing the time evolution of these distributions that is largely stochastic in nature

but combines some elements of the deterministic aspects of pit growth.

The pit depth distribution, or pitting corrosion damage function, is illustrated

schematically in Fig. 1. It is simply a plot of the number (or frequency) of pits at a

particular depth w depth. The darnage function maybe represented by smooth curves, as

in Fig. 1, or as a series of histograms, as shown later in this report. From a modeling

standpoint, the damage fimction is computed for various exposure times assuming that

the metal being pitted is inftitely thick. These curves then can be compared with the

actual wall thickness of the WP container, as shown in Fig. 1. The predicted time

required for the fmt pit to penetrate the container wall is that at which the computed

damage function f~st intersects the line corresponding to the wall thiclmess (z2in Fig. 1).

At longer times, the number of pits penetrating the container wall is proportional to the

area under the damage function curve for pit depths greater than the wall thickness (the

shaded area under the t3 curve). The calculated depths of through-wall pits have no

physical significance, since a pit cannot have a depth greater than the wall thickness.

●

I Container
t, (e.g. 50 yin.) Wall

Thickness

I
I
1

Pit Depth

Figure 1. Schematic illustrationof the pittingcorrosiondamage function.
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Figure 2. The inductiontime distributionfor 72 identioalType 304 stainless steel speoimens

immersedin NaCl solution. Data of Shibata and Takeyama4.

1.2 The stochastic nature of pittr”ngcorrosion

Experimental studies have shown that the initiation of corrosion pits is a

stochastic process. Shibata and Takeyamad were the f~st to show that the critical

potential necessary to induce pitting and the “induction” time elapsed before pits become

observable are both statistically distributed quantities. For example, Fig. 2 presents their

data showing the distribution of induction times for 72 ostensibly identical Type 304

stainless steel specimens subjected to identical conditions. The data exhibit a wide

distribution of induction times, suggesting that pit initiation occurs stochastically.

There is also evidence that the growth of existing pits is a stochastic process.

This hypothesis is supported by the fact that a wide distribution of pit depths occurs in a

single specimen subjected to a nominally uniform environment. In a study of the pit

depth distribution evolution in mild steel, Marsh et al.s identified four factors having the

potential to produce @e wide distribution of pit depths observed on any given sample:

.; 1) The pits will have different initiation times;

2) Many pits will cease to propagate following limited gro~,

3) The morphology of the pits will vary, with some favoring more rapid mass and

charge transfer, and hence faster propagation rates; and
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4) Some pits will initiate at metallurgical features which may favor more rapid

propagation, e.g. inclusions and grain boundaries.

Further support for the concept of stochastic pit growth is given by the data and

analysis of Aziz6 for the pitting corrosion of aluminum in tap water. Figure 3 shows the

pit depth distribution data of Aziz. When the aluminum is fmt exposed, a large number

of pits initiate and start propagating. After a short time, many pits progressively stifle

while only a portion of the population continues to grow, resulting in a backwards “J”

shape to the low depth portion of the distribution (This finding supports the concept of

permanent pit growth cessation introduced in Section 3.) For those pits still growing, the

random influence of the environment on propagation rates results in a bell-shaped

distribution, which moves as a body toward greater depths. (This finding directly

supports the concept of stochastic pit growth.) After much longer exposures, the mode,

i.e. peak, of the distribution becomes stationary, and only the deeper pits continue

growing. These pits grow at a steadily decreasing rate (which supports the use of a

nonlinear increase in pit depth with time, introduced in Section 2.3), and the majority of

the pits eventually stifle. These last two findings may result from the build-up of

corrosion products within and over pits.
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Figure 3. The distributionof pit depths as a function of exposuretime for Alcan 2S-0 aluminum
immersed intap water. Data of Aziz6. .
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2. The Initial Model

2.1 Stochastic pit initiation and growth

Over the past several years, a physically-based, phenomenological, stochastic

model of pit initiation and growth has been developedT-g. This model is based upon the

theory lo that small fluctuations in the local conditions (e.g. electrolyte chemistry, fluid

flow rate, surface topography, near-surface microstructure) cause local breakdown of the

passive surface film, resulting in the “birth” of metastable pits or “embryos.” Many of

these embryos become unstable when the local conditions change, and repassivation, or

“death,” of the embryo results. Once a surviving embryo reaches a critical size or age

(the two are assumed to be closely related), it beeomes a permanent or “stable” pit and

cannot die.

Monte Carlo computer codes have been developed to simulate the stochastic

processes of embryo birth and death and the establishment of a stable pitT. These codes

establish a unit area that is divided into individual “cells” to represent a metal surface in

contact with an aggressive environment. During each time step, a random number

between O and 1 is generated for every cell that does not already contain an embryo or

stable pit. If this random number is less than the user-prescribed birth probability, L a pit

embryo is placed in that cell; otherwise the cell remains empty. Physically, A

corresponds to the probability that, over the area of one cell in a unit time, the local

conditions will cause the passive film to break down, thereby initiating a microscopic pit

embryo.

For each cell containing an unstable pit embryo, another random number is then

generated. If this number is less than the input death probability, p, the embryo dies and

is removed from that cell. The death probability corresponds to the probability that a

specific pit embryo, or breakdown in the passive f@ will repassivate during a unit time.

Pit embryo death has been linked physically, for example, with a reduction in the

hydrodynamic boundary layer thickness, which causes a loss of the local concentration

excursions needed to support the pit embryol 1.

The “age” of eaeh surviving embryo, i.e. the number of time steps it has survived

since birth, is incremented at eaeh step and compared with the critical age, Zc. If the age

of an embryo equals ~c, a stable pit is formed in that cell, which is present for the

remainder of the simulation. Physically, the critical age can be related to the ratio of the

minimum stable pit depth to the velocity of pit embryo propagation 1. The minimum

stable pit depth is related to the surface roughness and the thickness of the hydrodynamic

boundary layer, and the veloeity of propagation depends on the electrochemical potential,
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aggressive ion concentration, and the nature of the alloy. Finally, note that all three of the

pit initiation parameters (z M @ can be related to experimentally measured quantities.

An example of the model predictions for pit initiation is shown in Fig. 47. The

parameters used to mske this calculation (given in the figure) were chosen arbitrarily, so

quantitative agreement with Fig. 2 is not expected. Qualitatively, however, the two

distributions are similar, suggesting that the model treats pit initiation in a realistic way.

Quantitative comparisons between the model predictions and pit initiation data have been

given elsewhere and support the same conclusion.

25 <

m Total simulations: 75
~ r 3 simulations with no pit-.

z

20

15

10

5

0

k = 0.02
p= 0.3
TC=15

N = 400

15 30 45 60 75

Induction Time

Figure 4. Model predictionsof the distributionin stable pit inductiontimes (arbiiraryunits).
Three of the 75 simulationsdid not produce a stable pit within75 time steps.

In the initial model, the effects of stochastic stable pit growth on the damage

function evolution were included using a simple approach: growth of a stable pit during a

particular time step occurs only if a randomly generated number between Oand 1 is less

than the prescribed growth probability, y. Physically, ycorresponds to the probability

that a pit will grow an increment in depth in one unit of time.

An example of the model predictions for stable pit growth under conditions of

constant environment is given as a series of histograms in Fig. 5. Each plot gives the

number of pits (per unit area) at each depth for a particukir exposure time, where time is
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given in number of time steps, At. (As discussed later, quantitative calculations for

which exposure times and pit depths have physically meaningful units require

experimental data to fit the parameters in the model.) For short times (10 steps) the

distribution is narrow, with a large number of pits at low depths. As time increases, the

total number of pits increases (40 steps) and the peak in the distribution occurs at an

intermediate depth. The number of pits at very low depths is now less than at shorter

times. At long times (100, 125 steps), the number of pits stays fairly constant and there

are few (if any) pits at low depths. The distribution also begins to broaden, and the

number of pits at the peak of the distribution is less than at shorter times. The depth at

which the peak occurs increases continuously with time. Many of these gross features are

consistent with the data published in the literature, e.g. Fig. 3. However, the linearly

increasing maximum pit &pth with increasing exposure time and the nearly symmetric

shape of the distribution are inconsistent with the available da@ as described in Section

2.3.

The utility of damage function evolution predictions like those given in Fig. 5 for

purposes of WP container performance assessment (PA) can be demonstrated as follows.

Consider the units of pit depth in Fig. 5 to be millimeters, and consider a WP container 32

mm thick. For times of 10 and 40 steps all of the pits have depths less than the thickness

of the container, so no release of radionuclides can occur as a result of pitting. Figure

5(c) shows that the time required for fmt penetration of the container is about 100 At,

since at this time the fwst pit with a depth equal to 32 mm has developed. With further

exposure to a time of 125 At, Fig. 5(d) shows that approximately 25 pits have calculated

depths 232 mm, and so will have penetrated a unit area of the container. While the

results in Fig. 5 are only qualitative, quantitative predictions could be made by

experimentally measuring pit depth distributions over a range of constant environmental

conditions, and using the results to provide quantitative values of the model parameters

for materials of interest.

2.2 Modeling the effects of environment

One major purpose of modeling pitting corrosion of WP containers

extrapolate short-time “accelerated” test data to the extremely long service times.

accelerated testing will require environmental conditions more aggressive than

is to

Since

those

expected in the repository, these extrapolations will require quantitative predictions of the

effects of environment on pit initiation and growth rates. Simulating the effects of

environment on pitting also will be required to explore container performance for various

environmental scenarios, including the case in which the environment changes with time.
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In the context of the stochastic pitting model, the goal is to model the

environmental sensitivity of the stochastic parameters: A, #, Zc, and y Rigorous

development of such relationships has not yet been possible, because it would require

considerable experimental work. Therefore, simple but physically reasonable

phenomenological expressions have been developed based on a variety of experimental

data from the literature. The purpose of this exercise was to provide the means for

qualitatively illustrating the potential power of the stochastic approach for predicting the

pitting response to various environments. Future efforts should be aimed at improving

the physical basis of these expressions, expanding their scope, and quantitatively

exploring their predictive capabilities.

Three important environmental parameters have been included in the illustrative

model: electrochemical potential, E, chloride ion concentration, [Cl-], and absolute

temperature, T. Other variables, such as pH, oxygen concentration and the presence of

other ions in solution, would need to be included in a complete analysis. Based on a wide

variety of published experimental da~ the following phenomenological expressions for

the environmental dependence of the stochastic parameters were determined’7:

A= Al (E- Bl) cexp(C1.[Cl-]). exp(-Q/RT) (1)

p= Az. exp(-C2.[Cl-]). exp(-Q/RT) (2)

c= A3. exp(-B@). exp(-C3.[Cl-]). exp(~ /RT) (3)

y = & (E - B4)B5. ([C1-])c4 ● exp(+Q/R~ (4)

where the A’s, B’s and C’s are constants, the Qs are activation energies and R is the gas

constant.

Using Eqs, (l)-(4), predictions of the effects of E, [Cl-], and Ton a variety of

pitting phenomena have been made7$. In general, the predictions are qualitatively

consistent with published experimental data. Most importantly, it has been

demonstrated that this expanded stochastic model can predict the pit depth distribution

evolution for continuously changing environmental conditions of the kind actually

expected in the repository. Consider the simple, but plausible, environmental scenario

shown in Fig. 67. Figure 7 shows the behavior of the stochastic variables computed by

Eqs. (l)-(4) for this environmental history. Note how the simple environmental changes

can cause complex changes in the stochastic variables, and thus the pitting response.

9



—

g

1.5

1.0

0.5

0.0

4

3

2

1

0
370

360

350

, * 1

340

330

0 50 100 150

Time

Figure 6. The hypotheticalenvironmentalhistoryused to make the predictionsgiven in Figs. 7
and 8. Time, electrochemical potentialand chloride ion concentrationare in arbRraryunits.

10



a

z
0.-
.-

6

0.08

0.06

0.04

0.02

0.00

0.8

0.6

0.4

0.2

0.0
16

14

12

10

8

6

4
0

0

0’/
0

/
/

/
0

0
0

0
0

,0
// ‘Y’,--

1 t

50 100 150

Figure 7. The time dependence of the stochasticparameters resultingfrom the environmental
historygiven in Fig. 6.

11



This prediction suggests the need for sophisticated models, not just simple empirical

laws, to predict the pitting response under realistic conditions. From the time evolution

of the stochastic variables, the model can then predict the evolution of the darnage

function, Fig. 8. Note how the complex environmental history has produced a pit depth

distribution after an exposure of 115 steps that has a complex shape compared to the

simple shape given in Fig. 5. As described earlier, distributions like those shown in Fig.

8 can be compared with the thickness of the WP container to assess its integrity. Thus,

even for complex environmental histories, the model can predict when the container is

first breached by a single pit and then how many pits per unit area will breach the

container as a function of time for longer exposures. This information then could be used

in a more complete PA model to predict radionucl.ide release rates.

2.3 Deficiencies of the initial model

The pit depth distributions predicted by the initial model for constant

environmental conditions, e.g. Fig. 5, properly exhibit an intermediate peak but

incorrectly simulate a nearly symmetrical distribution. Data for a wide range of materials

and testing conditions reported in the Iiteratures$> 12-16 show that such distributions

actually have a positive skew. Jn other words, the peak in the distribution occurs toward

small pit depths and a relatively long “tail” is exhibited at large depths, e.g. Fig. 3. While

this feature of the data may seem to be a minor detail, efforts to more accurately model

the tail of the distribution are justifkxi, because the deepest pits are the most significant in

terms of WP container degradation.

Related to the lack of a positive skew in the predicted pit depth distributions is the

assumption that all stable pits continue to grow, albeit in a stochastic manner, throughout

the entire simulation. As discussed in Section 1.2, a variety of data suggest that many

small pits cease to grow early during exposure, probably because of a lack of available

reactants, such as oxygen and electrons. Further, deep pits may cease to grow later in the

exposure because of capping or clogging with corrosion products. The initial model

could not simulate such behavior.

Despite the fact that pits grow to have a wide distribution of depths, indicating a

probabilistic aspect to pit growth, many theories treat pit growth deterrninistically,

typically as a problem in diffusion17. (Of course, the applicability of such theories to

millimeter-scale pits is debatable.) These diffusion theories and a variety of experimental

observations! 17 suggest that the pit growth rate decreases as the exposure time and pit

depths increase. Equation (5) is often used to phenomenologically describe these

deterministic aspects of pit growth (for constant environmental conditions):

12
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d=Atp , (5)

where d is pit depth, t is exposure time, and A and p are constants. Typically, p e 1, with

values of 0.3 and0.5 being quite common. However, the model presented in Sections 2.1

and 2.2 predicts that the median and maximum pit depth increase linearly with exposure

time for constant environmental conditions. This prediction stems from the assumption

that the growth probability, y is independent of exposure time or pit depth, and the

assumption that pit depth is directly proportional to the computed “age” of the pitg.

Finally, while the physical basis for modeling stochastic pit initiation is solidly

based on the theories and experimental results stemming from several careful

investigations, the physicaI underpinnings of the stochastic pit growth model are more

tenuous7$. Therefore, it was desirable to improve the link between the pit growth model

and accepted physical theories so that model extrapolations of laboratory data can be

made with more cotildence.

3. The Improved Model

3.1 Chunges to the model

As discussed earlier, experimental evidence suggests that many pits cease to

propagate following a limited amount of growth. To accommodate this observation, a

new stochastic variable was introduced into the model: the probability that during any

given time step a stable pit will permanently cease to grow, q. Again, a random number

between Oand 1 is generated at each time step for every growing pit, and if this number is

less than or equal to q the growth of that pit is permanently halted.

To account for the nonlinear pit depth increase as a function of exposure time

discussed in Section 2.3, the phenomenological relationship given in equation (5) was

incorporated into the model using two different approaches. The fret, or “preliminary,”

approach to including this deterministic aspect of pit growth involved a straightforward

extension of the model described in Section 2.1. The “revised” approach involved a new

interpretation of stochastic pit growth and included other changes to make the model

more physically realistic.

In the preliminary approach, Eq. (5) was incorporated directly into the model with

one slight modification. Instead of representing the exposure time, t is the pit “age;’

which is less than the actual exposure time for two reasons. First, it takes some

“induction” time, z, to initiate a pit following exposure (Section 2.1). Second, pits are

assumed to grow, or “age,” stochastically with some probability x and may permanently

14



cease to “age” with some probability q; i.e. pits do not age during all time steps. Thus, at

the end of a simulation the pits have a distribution of “ages,” from which the

corresponding depths are computed using Eq. (5). Of course, Eq. (5) is not ideal for

modeling purposes because it precludes easy treatment of variable environmental

histories. However, it was worthwhile to use this equation in combination with the

concepts of stochastic pit growth and permanent growth cessation as a means to begin

exploring models incorporating both the deterministic and probabilistic aspects of pit

growth.

In the revised model, the use of exposure time as an explicit variable to describe a

decreasing pit growth rate, Eq. (5), was eliminated. Jn addition to precluding the easy

treatment of variable-environment exposures, the explicit use of exposure time is

physically unrealistic since it is the increasing diffusion distance (i.e. pit depth), not

exposure time per se, that causes the decrease in pit growth rate. The revised model also

employs a new approach for simulating the stochastic aspects of pit growth. This

approach was motivated by the interpretation of experimental pit depth distribution data

by Marsh et al.s. These investigators suggested that the stochastic variation in pit gIowth

rates stems from the variations in pit morphology and local metallurgical conditions,

which cause variations in the charge and mass transfer rates from pit to pit. Thus, pits

grow continuously but at a variety of rates. The permanent pit growth cessation

probabti”ty, q, also was included in the revised model.

To incorporate these two new concepts of stochastic pit growth into the model,

Eq. (5) can be modified as follows:

kddA(t-kr~; pCl, (6)

where in this case t is the actualexposuretime and the superscript k is used to distinguish

among all the individual pits in the simulation. Note that each pit has its own induction

time, %, and its own value of A. The stochastic variation in pit growth rates is simulated

by randomly assigning a specific value of kA for each pit from a prescribed, possibly

nonuniform, distribution. In the analysis performed here, it is assumed that the values of

~A are distributed according to a normal, or Gaussian, distribution. Taking the time

derivative of Eq. (6) and substituting for the quantity (t – % ) by inverting Eq. (6) gives

an equation for the rate of pit growth that depends only on the depth of the pit, and not on

the exposure time. Writing this equation in incremental form with At as the time step size

gives the following:
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~=p(kA)% (kd)”-x , (7)

where

&d= kdi - kdi.1 , (8)

and the subscript i denotes the current time step. Thus, at any time step i in the

simulation, the increment in pit growth can be titten as a function only of the time step

size, the pit depth at the previous time step, and the constants kA and p:

kd. =

[ 1

‘di-l+~ P(kA)%(kdi_l)P-~ .1 (9)

Calculations have shown that the pit depth distributions predicted using Eq. (9) are

independent of time step size if the proper modifications are made to the input

probabilities (e.g., 4P, @to account for a change in A?T.

To implement Eq. (9), a method was established for producing random values of

kA fiom,a population that is normally distributed. An algorithm was identified18~19that

produces random values from the standard normal distribution using a uniform random

number generator, such as the one already implemented in the initial Monte Carlo code.

Thus, for any value taken randomly from the standard normal distribution, Z, the value of
kA with me co~sponting cumulative probability is simply:

kA=crZ+/i, (lo)

where cr and p are the standard deviation and mean of the desired kA distribution, which

are input prior to the simulation.

3.2 Model predictions

Figure 9 illustrates the capability of the new model in its preliminary form to

simulate the complex time evolution of the pit depth distribution. For this simulation, the

probability of initiating a new pit embryo was decreased exponentially with exposure

timeT such that no new pits were initiated for exposures greater than approximately 50

time steps. The parameters affecting the growth of these pits, x q, A and p, were chosen

arbitrarily and are given in the figure. Following 100 time steps, Fig. 9(a), the
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distribution exhibits a peek at the lowest depths, followed by a decrease in the number of

pits with increasing depth, and then a second 10CSImaximum. This gives the backwards

“J” shape to the initial part of the distribution noted by Axix (Fig. 3). Experimentally.

this portion of the distribution was attributed to the stitling of shallow pits. In the model,

this same feature is caused by the permanent cessation of growth for many small pits

through the parameter V. As the exposure time increases, the heights of the two peaks .

decrease somewhat as the distribution broadens, rig. 9(b). The broad distribution of pit

depths, particularly beyond the backwards “J” feature, was attributed by Aziz6 largely to

the randomly varying propagation rates for individual pits. This same characteristic is

predicted by the prcliminmy model largely through the stochastic growth probabdity, y

With further increases in exposure time, the two peaks remrdT-stationary and only the

deepest pits continue to grow, creating a long “tail” to the distribution, Fig. 9(c). This

same feature in the data of Asks, Fig. 3, is caused by the eventual stifling of most pits, so

that only a few grow to large depths. Consistent with this finding, the growth cessation

probability, q, causes most pits to stop growing after 500 time steps. Finally, note in Fig.

3 that the maximum pit depm dmm, increases ever more slowly as the exposure time

increases. A similar phenomenon is evident in Fig. 9. Following 100 time steps d-=

3.5, while after a five-fold increase in exposure timed- has less than doubled to 5.5,

Fig. 9(c). This prediction results partly from the use of Eq. (5) with p = 0.5. In addition,

the rate of increase for dmx slows due to the use of q = 0.01. Consider that for err

exposure of 500 steps only four of the initial 590 pits are still growing. Thk implies that

the pits which early in tire exposure were of maximum depth probably have permanently

halted, requiring shallower pits to grow and become the deepest active pits at longer

exposures. In summary, the complex pit depth distribution evolution exhibited in Fig. 3

is qualitatively predicted by the new preliminary model through the consideration of both

the stochastic and deterministic aspects of pit growth.

!:mlm

‘=0’5{’1I

,

500 Steps (c)

1 2 51 2 51
Pit3Dept:

2
Pit3Depth4

5
Pit3Depth4

Figure 9. Distribution in pit depths computed by the preliminary model for the growth parameters
given in the figure and exposures o~ (a) 100 time steps, (b) 200 time steps, and (c) 500 time

steps. Pi depths are in arbitrary unite.
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Of course, the evolution of the pit depth distribution is sensitive to the input

parameters affecting pit growth. Calculations have shown that the shapes of the

distributions during various stages of evolution are most sensitive to the relative values of

the pit growth and cessation probabilities, yand q. Experimental measurements of the pit

depth distribution evolution for matenrds and environments of interest would be required

to quantitatively determine values of x q, and the other model parameters.

Figure 10 presents the results of caIculatitms similar to those shown in Fig. 9 but

performed using the revised model. A permanent pit growth cessation probability of q =

0.01 and a time exponent of p = 0.5 again were used in these simulations. For relatively

short exposure times, e.g. 50 time steps, Fig. 10(a) shows that the dktribution of pit

depths is nearly symmetric. In the revised model, this distribution in pit depths is largely

caused by the d~tribution in A values, Eq. (10), since each active pit grows during every

time step. Note that the backward “J” shape of the distribution at small pit depths present

in the data of Aziz6 and in the calculations presented in Fig. 9 is absent in Fig. 10.

Fortunately, this aspect of the distribution has little practical importance because these

pits are small and don’t grow. For intermediate exposures, Fig. 10(b) shows that much of

the distribution moves as a body toward larger pit depths so that the distribution remains

roughly “bell” shaped. However, it becomes somewhat skewed toward small pit depths

with en increasingly long tail at large depths. Similar features are observed in the data

given in Fig. 3 for pits beyond the backward “J.” FmaUy, for relatively long exposures,

Fig. IO(C)shows that the distribution has become nearly stationary, with only the deepest

pits continuing to grow, making the tail at large depths more extensive. Again, this

feature of the predictions is qualkatively consistent with that computed by the

preliminary model end observed experimentally, Fig. 3.

(a) (b) (c)

500 25

400 20

300 15

200 10

100 5

0
5 5

,w,- Pit Depth Pit Depth Pit Depth

Pigure 10. Distribution in pit depths computed by the revised model for the growth parameters
given in the figure and exposures ot (a) 50 time steps, (b) 200 time steps, and (c) 500 time steps.

Pit depths are in arbiirery units.

18



The new model, both in its preliminary and revised forms, is capable of

simulating the nonlinear dependence of the maximum pit depth on exposure time (for

constant environmental conditions). Figure 11 shows an example for the revised

formulation using input values of p = 0.5 and q = 0.001. The plot with linear axes, Fig.

1l(a), emphasizes the striking decrease in the pit growth rate with increasing exposure

time and pit depth. The logarithmic plot in Fig. 1l(b) shows that, as expected, the

predicted time exponent equals the input value of p, so long as significant permanent pit

growth cessation has not occurred. This latter phenomenon is what causes the computed

maximum pit depth at 5000 steps to be somewhat below the line for p = 0.5.

In summary, the new model is capable of qualitatively reproducing the shapes of

the pit depth distributions typically observed experimentally, including the presence of a

long tail at large depths. The new model also predicts a nonlinear increase in maximum

pit depth with increasing exposure time, consistent with a wide variety of data. These

improvements stem from a combination of changes related to the stochastic and

deterministic aspects of pit growth. Minor differences exist between the preliminary and

revised versions of the new model in the details of their predictions regarding pitting

damage (also see Section 4). However, neither method is clearly superior to the other in

the accuracy of its predictions, though the revised model has a stronger physical basis.

Experimental data relevant to modeling pitting corrosion of WP containers are required to

make a final judgment regarding the suitability of the two methods.

(a)

L J

p = 0.5
’00 : q = 0.001
80 -

60 :

40 -

0 L
o 1000 2000 3000 4000 5000

TimeSteps

(b)

I I 1 1

t t 1 i

10 100 1000

Time Steps

Figure 11. Revised model predictionsof the time dependence of the maximum pit depth are
plotted on (a) linear and (b) double-logarithmic axes. Pit depths are in arbiirary units.
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4. Dependence of Maximum Pit Depth on Surface Area Exposed

The method of “extreme-value statistics” (EVS) is commonly employed in the

analysis of experimental pit depth data6~lz-lA. EVS is particularly valuable for predicting

the commonly observed logarithmic increase in maximum pit depth with increasing

specimen or service component surface areas~b~14J5. In the context of WP container

design and performance assessment, EVS analysis of laboratory data collected on a

limited number of small specimens might provide the means to predict the probability of

pits reaching signiilcant depths (e.g. equal to the container thickness) over the surface of

an entire container, or many containers. Such a prediction should be accurate so long as

the extrapolated maximum pit depth exceeds the deepest measured pit by no more than

about a factor of threeb. Fortunately, this provides an extrapolation in exposed surface

area of up to three orders of magnitude.

Given the utility and wide acceptance of EVS to analyze pitting damage, it is

useful to determine if the stochastic pitting model is consistent with this method.

Therefore, modifications to the Monte Carlo code were made which follow from the

actual experimental procedure described by Aziz6. First, an individual test coupon is

simulated by a single model “run” using a unique “seed” value to initiate the random

number generator. Using a single set of input parameters, an N-run simulation is

performed in which each run begins with a different random number seed. This

procedure corresponds to the exposure of multiple, identical test coupons to the same

corrosive environment, as described by Azizb. Analogous to the experiments, the surface

area simulated is proportional to the number of runs in the simulation, since one run

represents a unit surface area. Following each run within a particular N-run simulation,

the maximum computed pit depth is stored. Once all N runs have been completed, these

values are sorted in ascending order, providing “data” analogous to those collected

experimentally%

all-< d2-< ... < d/’% ... < dN- . (11)

The cumulative probability that the deepest pit is less than or equal to d~m~ is then

computed from these data as:

om=m/(N+ l). (12)
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These probabilities ffom the Monte Carlo simulation are then analyzed using the most

common expression for the expected extreme-value distribution%

@m= exp [ -exp (–ym) ] ,

where yn is the “reduced variate.” The reduced variate is defined as:

ym=a(dm-–u),

(13)

(14)

where u is the “mode” (highest point of the extreme-value distribution) and a is the

“sc~e” parameter measuring the width of this distribution. The values of u and ~ are fit

to the Monte Carlo “da@” Eq. (11), as follows. First, Eq. (13) is solved for ym, giving:

ym = -ln {-III (@m)} , (15)

where Om is computed from the Monte Carlo results using Eq. (12). For each value of

@m,a corresponding yn is computed from Eq. (15). Then, the data pairs (d~-, ym) are

plotted on linear axes and fit to Eq. (14) using linear least squares analysis to detexmine a

and u. Extrapolation of this fitted line provides predictions of the probability and

exposure time required for the occurrence of a pit of any given depthb.

6.5

6

5.5

5 ~””’ I 1
10 100

Surface Area

(b)

40 I I

:500 Steps
35 - ●

●

30 - ●

25 -
●

20 I t
1 100

Surface Area

Figure 12. Predictionsof the increase in maximumpit depth with increasingexposed surface
area from (a) the preliminarymodel, and (b) the revised model. Pit depth and surface area are in

atiitrary units.

21



In general, the stochastic model is consistent with the EVS theory. For example,

it has been showng that the d~- vs yn plots predicted by the stochastic model are

qualitatively consistent with those measured experimentally in several material–

environment systemsG~12-14. Most importantly, consistent with previous EVS analyses

and data, the stochastic model predicts that the maximum pit depth increases

logarithmically with increasing exposed surface area, Fig. 12. Thus, by performing

simulations with identical input parameters and varying the numbers of runs, the effect of

exposed container surface area on the maximum pit depth can be predicted by the

stochastic model.

5. Experimental Validation

Modeling cannot progress without input fkom experimental data. Experimental

&ta are required to fit the model parameters so that quantitative predictions can be made,

to verify the accuracy of the model, to validate the basic model assumptions, and if

necessary to re-formulate the model. Ideally, the process of modeling and testing is

iterative, with these efforts taking place in parallel so that results from one can drive

improvements in the other. Plans for experimental support of the stochastic modeling

effort have been made*O-**but funding constraints have limited the execution of these

plans.

To date, the experimental validation of the models has been limited to a few

preliminary measurements of the pit depth distribution evolution in Incoloy 825. Briefly,

these experiments involve exposing flat specimens to an aggressive aqueous

environment. A constant electrochemical potential is applied to the specimens to induce

relatively rapid pitting under controlled conditions. Each specimen is removed from the

aggressive environment following a prescribed exposure time, and is examined to

measure the distribution of pit depths. The evolution of the distribution with increasing

exposure time can then be compared with model predictions to test the assumptions and

equations used in the model.

Speciilca.lly, potentiostatic polarization experiments were performed on 1 cm2

samples of Incoloy 825 immersed at 90 ‘C in 5% NaCl aqueous solution containing

sulfuric acid (pH = 2.6). Using optical microscopy, the depth of each pit was measured

by calibrated focusing, and the pit diameters were measured with a fdar eyepiece. (Note

that pits with depths less than about 25 pm, of which there were many, were not

measured). Examples of the measured pit depth and diameter distributions are given in

Fig. 13. These distributions are qualitatively similar to the predicted distributions shown
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in Fig. 10 for relatively short exposures. In particular, there is a peak in the distributions

at an intermediate depth or diameter. However, the long tail in the distribution at large

depths (or diameters) that is predicted by the model for long exposures is not observed in

the short-exposure distributions given in Fig. 13. Longer time exposures are required to

test this prediction of the model. Table 1 gives a summary of the measured pit depth date

gathered to date. Although these date are insufficient to draw many fm conclusions, it

appears that increasing the applied electzochemic+ potential, I&p, increases the number

of pits per unit area. The effeets of exposure time end electrochemical potential on pit

depths are not yet clear.

(a) (b)
l am,,,,,,,,.,,,,,,,,,.. . . . .,,, ,, .,, ,, .,,.. .,, ,., , ,,, ,,, ,

g
a ~o

z
j
E5

z

0
0.1 0.2 0.3 0.4 0.5 0.6 0 0.3 0.6 0.9

\,r, !l, !!l!!,,,,, cl,i

0.1 0.35 0.6 0.83 ,.,

Pit Depth (mm) Pit Diameter (mm) Pit Aspect Ratio

Figure 13. Experimental dklnbutions of (a) pti depth, (b) diameter, and (c) aspect ratio for Incoloy
825 immersed for 240 minutes at 90 “C in pH 2.57, 5% NaCl solution and polarized at 402 mV

SHE. Unpublished date of Henshall and Roy [23].

Table 1. Plt depth distribution date for 1 Cd samples of Incoloy 825 immersed in
acidified brine (5% NaCl) at 90 ‘C. Data of Henshall end Roy [23].

‘%P Exposure Number Maximum Median

(mV SHE) Time (mitt.) pH of Pits Depth (mm) Depth (mm)

372 480 2.67 1 0.361 0.361

382 120 2.66 6 0.653 0.449

382 232 2.64 34 0.899 0.621

392 218 2.51 21 0.822 0.681

402 240 2.57 68 0.505 0.363

F@rre 13(c) shows the distribution in pit aspect ratios, defined es the pit depth

divided by the diameter. If the aspect ratio is less than one (broad, shallow pits),
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automated pit depth measurement techniques may be viable for future work, or the pit

diameter could be used as a conservative measure of damage. The data given in Fig.

13(c) reveal that all pits have an aspect ratio less than one for this experimen~ though

testing under somewhat different conditions revealed aspect ratios of up to 2. Again,

more data are required to make a fm conclusion regarding pit aspect ratios in Alloy 825.

6*s~ and Collusions

A phenomenological, stochastic model of pit initiation and growth has been

developed in support of waste package container design and performance assessment.

This model can simulate the time evolution of the distribution in pit depths on a metal

surface exposed to an aggressive environment. A review of the initial model revealed it

to be capable of realistically simulating stochastic pit initiation. This model also includes

simple phenomenological relationships describing the environmental dependence of the

stochastic parameters. Therefore, it can simulate pit initiation and growth under variable-

environment histories, such as those anticipated in the repository.

Recent improvements to this model have focused on pit growth and the time

evolution of the pit depth distribution. These improvements include the capability to

model permanent pit growth cessation, methods to deterrninistically predict a nonlinear

increase in maximum pit depth with increasing exposure time (for constant

environmental conditions), and a more physically realistic treatment of stochastic pit

growth. These improvements have resulted in predictions that are qualitatively more

consistent with a variety of experimental data in the literature, for example the

development of pit depth distributions with a positive skew and a long tail at large pit

depths. Further, this model has been shown to be consistent with extreme-value

statistical methods for predicting the logarithmic increase of maximum pit depth with

increasing exposed surface area.

A critical need has been identified for generating experimental data for candidate

container materials exposed to repositoyrelevant environments. These data are required

to quantitatively assess and further develop the model. Preliminary pit depth distribution

data for Incoloy 825 have been presented. These data are qualitatively consistent with

stochastic model predictions of a peak in the pit depth distribution at intermediate depths,

and show that this alloy is susceptible to pitting under aggressive conditions.

.,.
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